Definitions | Type, t T, s = t, {x:A| B(x)} , Knd, b, x:AB(x), x:A. B(x), Top, left + right, State(ds), x:A B(x), Id, hasloc(k;i), , x.A(x), x. t(x), a:A fp B(a), (x l), type List, MaInterface(T), IdLnk, ES, EState(T), f(a), , strong-subtype(A;B), P Q, EqDecider(T), Unit, EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), loc(e), kind(e), Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , constant_function(f;A;B), SWellFounded(R(x;y)), pred!(e;e'), x,y. t(x;y), Void, x:A.B(x), S T, suptype(S; T), first(e), A, <a, b>, pred(e), P & Q, Atom$n, [[X]], e X, E, ma-interface-consistent(es;X), let x,y = A in B(x;y), x : v, f g, ma-interface-consistent-at(es;i;X), valtype(e), rcv(l,tg), kind(e), t.1, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , True, T, Dec(P), x:A. B(x), b | a, a ~ b, a b, a <p b, a < b, A c B, x f y, xL. P(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), es-r-immediate-pred(es;R;e';e), same-thread(es;p;e;e'), [e: i p j], [e: i p j], f2f+-pred(e',e), SqStable(P), P Q, a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, E(X), X(e), es-in-port(es;l;tg), glued(es; B; f; Ia; Ib), IdDeq, x dom(f), ma-interface-glued-p(es;A;I;l;tg) |